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Outline 
 

• Basics of hypothesis testing. 
– Formulation of statistical hypotheses. 
– P-value & level of significance of a test. 
– Power and sample size calculations. 

 
• Comparison of two or more groups. 

– Parametric procedures. 
– Nonparametric procedures. 
– Resampling based methods:  Permutation and Bootstrap 

procedures. 
 

• Multiple testing in high dimensional data. 
– Types of error rates. 
– Two important procedures for high dimensional data. 
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Basics of hypothesis testing 



Formulation of hypotheses 

• Null hypothesis 
 
– Hypothesis of no difference or no association. 

 
 

• Alternative hypothesis 
 
– Hypothesis the researcher is trying to prove. 
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The basic idea 
 

Assuming that the null hypothesis is true, is there  
“sufficient” evidence in the data to reject the null  
hypothesis in favor of the alternative hypothesis? 
 
 
Example:  
 

– Defendant is guilty (test substance is toxic). 
 

– Defendant is innocent (test substance is not toxic). 
 
 

Which is the null and which is the alternative  
hypothesis from a jury’s (toxicologist’s) point of  
view? 
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The basic idea 
 

Null hypothesis:  Defendant is innocent. 
 
(No difference between the test substance and the  
vehicle control). 

 
 

Alternative hypothesis: Defendant is guilty. 
 
(There is difference between the test substance  
and the vehicle control). 
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The basic idea 
 

Assuming that the defendant is innocent 
(there is no difference between the test substance  
and the vehicle control), how likely are we to see the 
following? 
 
• Defendant’s finger prints at the crime scene 
 (half the treated animals developed tumors). 

 
• An eye witness who saw the defendant at the crime 

scene (none of the control animals developed 
tumors). 

 
Etc. 
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Caution 
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The following formulation of hypotheses is not 
valid. 
 
           There is a higher tumor incidence in the test 
chemical group than in the vehicle control group. 
 
 
          There is no difference in tumor incidence 
between the test chemical and vehicle control. 
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The p-value 

Calculate the probability of outcomes as extreme as  
the ones observed – assuming the null hypothesis is  
true. 
  This is known as the p-value! 
 
If p-value is small then it implies that you observed an  
event that is very unlikely to occur had the null  
hypothesis been true! 
 
 
 
Reject the null hypothesis if the p-value is “small”.  
The defendant is guilty (test substance is toxic)! 
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The p-value 

Calculate the probability of outcomes as extreme as  
the ones observed – assuming the null hypothesis is  
true. 
  This is known as the p-value! 
 
If p-value is small then it implies that you observed an  
event that is very unlikely to occur had the null  
hypothesis been true! 
 
 
 
Reject the null hypothesis if the p-value is “small”.  
The defendant is guilty (test substance is toxic)! 
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Level of significance 
 

• How “small” is small? It is subjective! 
 
– This threshold is known as the “level of significance” 

against the null hypothesis.  Denoted by  
 

– Typically 
 

– Thus you may reject the null hypothesis if the  
p-value < 
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Interpretation  
 

What should be the conclusion when the p-value is  
“large”? 

 
Should it be “Accept the null hypothesis”? (i.e. 

defendant innocent). 
 

No! Wrong conclusion. 
 

Correct conclusion: We conclude that there is not 
sufficient evidence in the data to reject the null 
hypothesis at the specified level of significance! 
(fail to reject the null that the defendant is 
innocent) 
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Caution  
 

In standard statistical framework you can never  
prove the null hypothesis since you are performing  
your statistical test assuming the null hypothesis is  
true! 
 
You need to state the hypothesis you desire to prove 
as the alternative hypothesis.  If the evidence is 
sufficiently strong against the null hypothesis you can 
reject the null in favor of the alternative hypothesis. 
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Bioequivalence Test  
 

What if the hypothesis of interest is the equivalence 
of means of two populations? 
e.g., Test the hypothesis that the mean expression of 
a gene is same between normal and tumor tissue 
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We can formulate the hypothesis as follows: 
 

𝐻0: Mean expressions are not equivalent 
𝜇1 − 𝜇2 ≤ −𝛿 𝑜𝑜 𝐻0:  𝜇1 − 𝜇2 ≥ +𝛿 

 
𝐻𝑎: Mean expressions are equivalent 

−𝛿 < 𝜇1 − 𝜇2 < +𝛿 
 
where −𝛿 , +𝛿 is the allowable range for equivalence 
 
 
 

 
 
 
 



Bioequivalence Test  
 

Restate the hypotheses is as the following pair of 
hypotheses and test each of them.: 
 

𝐻01: 𝜇1 − 𝜇2 ≤ −𝛿 
𝐻𝑎1:  𝜇1 − 𝜇2 > −𝛿 

      and 
𝐻02:  𝜇1 − 𝜇2 ≥ +𝛿 
𝐻𝑎2:  𝜇1 − 𝜇2 < +𝛿 

 
 

Conclude equivalence if and only if both H01 and H02 were 
rejected. 
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Formulation of alternative hypothesis 
 

Two common types of alternative hypothesis. 
 

Two-sided hypothesis 
 
       Mean of the treatment group is different 

 from the that of the vehicle control.   
 

One-sided hypothesis 
 
    Mean of the treatment group is larger than 

 that of the vehicle control.   
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More precisely … 
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More precisely … 
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Types of errors 
 

All inferences are based on a sample of data (or  
evidence). 
 
Consequently we are likely to make errors in our  
inferences. 
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Types of errors 
 

• False positive  = Falsely rejecting the null 
hypothesis (Type I error). 

 
– Declaring the defendant to be guilty when the person is 

innocent. 
– Declaring a chemical to be toxic when it is not really 

different from the vehicle control. 
 

• False negative = Failing to reject the null when the 
alternative hypothesis is true (Type II error). 
 
– Failing to declare a guilty person to be guilty. 
– Failing to declare a toxic chemical to be toxic. 
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Types of errors 
 

21 

  State of Reality 
H0 True H0 False 

Decision Made 
Based on 

Sample Data 
According to 

Rule 

Do not 
reject H0 

Correct 
Decision 

Error in 
Decision 

(Type II error) 

Reject H0 
Error in 
Decision 

(Type I error) 

Correct 
Decision 

Power 
 
Pr(reject H0|H1) 



Illustration of Power 
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µ = µ1 < µ0 

Power=  
Pr(reject H0|H1) 



Designing studies 

 
• In addition to the underlying science, several 

factors play an important role in conducting good 
experiments/studies. 
 
– Randomization 

 
• To avoid any systematic bias. 

 
– Replication (loosely speaking “sample size”) 

 
• To get a good estimate of the underlying variability in 

the data.  
 

• Impacts the power of a study. 
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Power and sample size 
 

Power: Probability of rejecting the null hypothesis 
when the alternative hypothesis is true. 
 
Some factors that impact sample size required in an  
experiment: 
 
1. Power:  n    with increase in the desired power. 

 
2. Level of significance: n    with increase in the 

desired the level of significance. 
 

3. Variability in the data: n   with increase in 
variability in the data. 
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Power and sample size 
 

4. Effect size: n    with increase in the desired 
effect size. 
 

5. Experimental design. 
 

6. Type of alternative hypothesis (Very important 
when designing your study!). 
 

7. Choice of the statistical test. 
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Factors influencing sample size calculations  
– An illustration 

 
Sample size calculation for a power of 80% in a two- 
sample t-test with a 5% level of significance. 
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Sample size 
Coefficient 
of variation 
(CV) Effect size 

One sided 
alternative 

Two sided 
alternative 

0.5 1.5 28 34 
0.5 2 8 12 
1 1.5 102 128 
1 2 28 34 

1.5 1.5 224 286 
1.5 2 58 74 
1.5 3 16 20 

CV= Standard deviation/Mean 



Check list for sample size calculation 

• Are you interested in one-sided or two-sided 
hypothesis?   
 
– In case you want to compare more than 2 groups – talk to 

a Biostatistician! 
 

• Determine the effect size you are hoping to 
detect.  Choose a reasonable/realistic effect size. 
 
– Too small would result in a very large sample size! 
– Too large may result in an unrealistically small sample 

size and you actually may not have good power for a 
reasonable effect size. 
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Check list for sample size calculation 
 

 
• Obtain an estimate of the anticipated variability in 

the data.  
 
– Always challenging since you have not done the 

experiment yet! 
 
Some tips you can use: 
 
1. Pilot studies conducted in the past. 

 
2. Similar experiments/studies published in the literature. 

 
3. Guess a plausible range of the data and divide by 4. This 

might provide an estimate under the assumption that the 
data are likely to be normally distributed. 
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Comparison of two or more groups…  
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Three classes of methods 

A. Parametric methods.  
– Underlying probability distribution is known (e.g. normally 

distributed data). 
 

B.  Nonparametric methods (Distribution free methods). 
– Underlying probability distribution is not known. 

 
C. Re-sampling based methods (Useful for bioinformatics). 

– Underlying probability distribution is not necessarily 
known.   

– Some of the resampling methods are more flexible than 
the standard nonparametric methods. 
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Parametric methods 
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Example 1 

• Consider an assay resulting in the following data: 
 
 
 
 
 
 
 
 
 
 

• Question:  Is the mean of the treatment group significantly 
different from the mean of the control? 
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Replicate Control Treatment 

1 2.73 2.04 
2 1.57 7.39 
3 1.02 4.37 
4 1.6 6.53 
5 0.41 
6 3.44 



“Typical” strategy – Parametric procedure 

• Compute: 
  

– the sample means of the two groups. 
 
– the sample standard deviations. 
 

• “Pooled t-test” statistic:   
 

 
 

 
 
 

• P-value 33 

Group Mean 
 

Standard 
Deviation 
 

Control 1.80 1.11 

Treatment 5.08 2.39 
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Back to Example 1 

• P-value = 0.0176 
 
• Conclusion:  The result is significant at 5% level of 

significance.  Thus the mean of treatment group is 
significantly different from the mean of the 
control group at 5% level of significance.  

 
• Question:  Is this conclusion valid? 
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When is the pooled  
t-test valid? 
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Assumptions made in pooled t-test 

1*. Samples within each group are a simple random 
sample.  
 
– Avoids any systematic bias in your samples. 
 
– Observations are independent. 

 
 
2*. Samples between groups are independent. 
 

– e.g. not repeated measures. 
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Assumptions made in pooled t-test 

3*. Data within each group are approximately 
normally distributed!  

 
– Not a critical assumption if the sample sizes 

are “large” or if the distributions are 
approximately symmetric. 

 
 
4*. The population variance of the two groups is 

same!  
  
Known as homoscedasticity (or variances are  
homogeneous). 
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Questions 

 
• How do we detect if               ? 
  
 Known as heteroscedasticity (or heterogeneous) 

variances. 
 

 
• If we conclude heteroscedasticity then how do 

we compare the means? 
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Methods for detecting heteroscedasticity 

1. Formal statistical test (an F-test). 
 
– The data need to be normally distributed.  
 

2.   Graphical method using residuals.  
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Replicate Control 
data 

Control residual Trt. data Trt. residual 

1 2.73 2.73 - 1.80 2.04 2.04 - 5.08 
2 1.57 1.57 - 1.80 7.39 7.39 - 5.08 
3 1.02 1.02 - 1.80 4.37 4.37 - 5.08 
4 1.6 1.60 - 1.80 6.53 6.53 - 5.08 
5 0.41 0.41 - 1.80 
6 3.44 3.44 - 1.80 



Graphical method using residuals 
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Replicate Control  
residual 

Treatment 
residual 

1 0.93 -3.04 

2 -0.23 2.31 

3 -0.78 -0.71 

4 -0.20 1.45 

5 -1.39 

6 1.64 



Residual plot to detect heteroscedasticity  
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Conclusion? 

• Even though the two-sided P-value (0.0176) based 
on the pooled t-test appears to be significant, this 
conclusion may not be valid since the two groups 
appear to have different variances. 
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Some strategies when the  
pooled t-test is not appropriate 

 (Known as the Behrens-Fisher problem) 
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Welch’s and other approximations  
(available in some standard packages) 

The t-statistic is different from the pooled  
t-test: 
 
 
 
 
The degrees of freedom are calculated from  
the data and is NOT                    
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Back to the Example 1 

• Compute: 
  

“Unequal variance t-test” statistic:   
 

 
 

 
 
 

• Welch’s P-value using EXCEL = 0.0640  - NOT 
significant at 5% level of significance! 
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Group Mean 
 

Standard 
Deviation 
 

Control 1.80 1.11 

Treatment 5.08 2.39 

57.2)(

2

2
2

1

2
1

21 =

+

−
=

n
S

n
S

xxt



Effect of unequal variance  
on the Pooled t-test 

A. If the two groups have the same sample size then the 
pooled t-test should be okay in general.  

 
B. If                 and            then pooled t-test may have.  
 
higher false positive rate than the desired nominal level.  
 

– Thus you can’t be too sure about the significant result 
observed in the data. 

 
C. If                and             then pooled t-test may have.  
 
smaller false positive rate than the desired nominal level.  

 
– Hence may result in loss of power. 
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Question 

Why not use the unequal variance t-test for all 
data sets since it requires one less assumption? 
 
 
Answer:  If the two populations have equal 
variances then the unequal variance t-test will 
be less powerful than the pooled t-test. 
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A simple alternative strategy 

• Perform transformations to data and then apply 
pooled t-test. 

 
1. Log-transformation –perhaps the data are log-normally 

distributed.   
 
 

2. More generally perform Box-Cox power transformations. 
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B. Nonparametric methodology  
- Useful when distribution of the data within 

each group is unknown or non-normal!  
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Wilcoxon Rank Sum test 

 
 
Control: 2.73, 1.57, 1.02, 1.60, 0.41,3.44 
 Treatment: 2.04, 7.39, 4.37, 6.53   
Mix the two samples and rank from smallest to largest 
 
• Combined data:   
 
 0.41, 1.02, 1.57, 1.60, 2.04, 2.73, 3.44, 4.37, 6.53, 7.39 
 • Rank:  

 
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

 
Rank data:  
 
• Control: 1, 2, 3, 4, 6, 7 
• Treatment: 5, 8, 9, 10 
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Wilcoxon Rank Sum test 

 
Rank data:  
 
• Control: 1, 2, 3, 4, 6, 7  Sum=23 
• Treatment: 5, 8, 9, 10  Sum=32 
 
If the sum of the Control group is “unusually” small or 
large, you reject the null hypothesis that the two groups  
have same distribution.  The  critical values are obtained by  
Wilcoxon rank sum test tables or normal approximation (if the 
sample size is large enough). 
 
P-value is 0.0428 
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What assumptions are required for 
Wilcoxon Rank Sum test? 
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Assumptions made in pooled t-test 

1*. Samples within each group are a simple random 
sample.  
 
– Avoids any systematic bias in your samples. 
 
– Observations are independent. 

 
 
2*. Samples between groups are independent. 
 

– e.g. not repeated measures. 
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                                        Wilcoxon Rank Sum test 
Assumptions made in pooled t-test  

1*. Samples within each group are a simple random 
sample.  
 
– Avoids any systematic bias in your samples. 
 
– Observations are independent. 

 
 
2*. Samples between groups are independent. 
 

– e.g. not repeated measures. 
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Assumptions made in pooled t-test 

3*. Data within each group are approximately 
normally distributed!  

 
– Not a critical assumption if the sample sizes 

are “large” or if the distributions are 
approximately symmetric. 

 
 
4*. The population variance of the two groups is 

same!  
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3*. Data within each group are approximately 
normally distributed!  

 
– Not a critical assumption if the sample sizes 

are “large” or if the distributions are 
approximately symmetric. 

 
 
4*. The population variance of the two groups is 

same!  
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Not needed! 

                                        Wilcoxon Rank Sum test 
Assumptions made in pooled t-test  



3*. Data within each group are approximately 
normally distributed!  

 
– Not a critical assumption if the sample sizes 

are “large” or if the distributions are 
approximately symmetric. 

 
 
4*. The population variance of the two groups is 

same!  
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Not needed! 

                                        Wilcoxon Rank Sum test 
Assumptions made in pooled t-test  

3* 



Some comments 

• Median test is another nonparametric test 
commonly used – compare the medians. 

 
• Wilcoxon  rank sum test is also the Mann-Whitney 

test.  Some times these tests are also known as 
Mann-Whitney-Wilcoxon test. 

 
• Wilcoxon rank sum test is also a special case of 

Kruskal-Wallis test. 
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C. Resampling methods 
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Two general schemes 

• Methods that enable us to derive the distribution 
of a test statistic under the null hypothesis. 
 
– Permutation: 
 

• Exchange labels on data points: random 
draws without replacement from the mixed 
sample. 

 
– Bootstrap (numerous variations exist): 
 

• Bootstrap -1: Random draws with 
replacement from the mixed sample. 

 
• Bootstrap -2: Bootstrap the residuals. 

60 



Permutation test 

 
1. Compute the test statistic T using the given data.  
2. Combine the two sets of samples into one (n1+n2). 

 
• Assign a random sample of n1 observations (without 

replacement) to the Control group.  The remaining n2 are 
assigned to the Treatment group. 

 
3. Construct the test statistic using the above null data. 

Denote it by T*. [center at the difference of the 
sample means] 
 

4. Repeat the above process a large number of times.  
 

5. Determine the proportion of times T* > |T|. Multiply 
by 2 to get a p-value for the two-sided test. 
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Example: Permutation test  

Ref: http://faculty.washington.edu/kenrice/sisg/SISG-08-06.pdf 
 
Generate date: 10 exposed subjects and 10 unexposed 
subjects.  1) µ0 =µ1 =0;  
                2) µ0 =0 and µ1 = 1  
 

> set.seed(11)  
> exposure<-rep(c(0,1), c(10,10))  
> null.y<-rnorm(20)  
> alt.y<-rnorm(20, mean=exposure)  
> null.diff<-mean(null.y[exposure==1])-
mean(null.y[exposure==0])  
> alt.diff<-mean(alt.y[exposure==1])-mean(alt.y[exposure==0])  
> null.diff [1] 
    -0.2390708 
 > alt.diff [1] 
    0.9939836 
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Example: Permutation test  

Generate permutations:  
one.test <- function(x,y) { 
  xstar<-sample(x) 
  mean(y[xstar==1])-mean(y[xstar==0]) } 
 
many.truenull <- replicate(1000, one.test(exposure, null.y)) 
many.falsenull <- replicate(1000, one.test(exposure, alt.y)) 
 

63 

sample(x): generate random permutation  
 

> exposure  
[1] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1  
> sample(exposure)  
[1] 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 



Example: Permutation test  

R codes for plotting 
 
> hist(many.truenull)  
> abline(v=null.diff, lwd=2, col="purple")  
> mean(abs(many.truenull) > abs(null.diff))  
[1] 0.52  
> hist(many.falsenull)  
> abline(v=alt.diff, lwd=2, col="purple")  
> mean(abs(many.falsenull)  
> abs(alt.diff))  
[1] 0.006 
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Example: Permutation test  
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Percent of times |permuted mean| > |observed mean|: 
              0.52                                                    0.006 

µ0 =µ1 =0 µ0 =0 and µ1 =1  



Bootstrap -1  

 
1. Compute the test statistic T using the given data.  
2. Combine the two sets of samples into one (n1+n2). 

 
• Assign a random sample of n1 observations (with 

replacement) to the Control group and a random sample of 
n2 (with replacement) to the Treatment group. 

 
3. Construct the test statistic using the above null data. 

Denote it by T*. [center at the difference of the 
sample means] 
 

4. Repeat the above process a large number of times.  
 

5. Determine the proportion of times T* > |T|. Multiply 
by 2 to get a p-value for the two-sided test. 
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Comments on Permutation and Bootstrap -1 

 
• If the sample sizes are large then the p-values 

from the two methods are approximately same. 
 

• Both methods make same assumptions as the 
Wilcoxon rank sum test does.  
 

• Neither method is suitable if the two groups have 
different variances.  
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Back to example 1 

The bootstrap p-value using 10,000 bootstrap  
samples = 0.0610. 
 
Conclusion: Do not reject the null that the two  
groups have same mean at 5% level of significance. 
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More than two treatment groups… ANOVA 
Interval scale data 
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Three classes of methods 

A. Parametric methods.  
 

B. Nonparametric methods (Distribution free 
methods). 

 
C. Re-sampling based methods. 
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Parametric methods 
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The global/complete null hypothesis 
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Example 2 

• Consider an assay resulting in the following data: 
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Replicate Control Dose 1 Dose 2 Dose 3 
1 10.919 10.936 11.636 2.756 
2 10.880 8.933 12.051 8.140 
3 10.412 10.691 11.302 8.987 
4 10.838 9.392 14.009 11.523 
5 10.491 9.349 12.771 2.740 
6 9.109 8.869 14.239 11.372 



The Analysis of Variance (ANOVA) – 
the basic idea 

• Compute the means of the data from each group. 
 
 
 
 
 

• Basic idea of F-test: 
 

– If sample means of the four groups are “far 
apart” relative to the within group variation 
then you may want to reject the null hypothesis. 
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Control Dose 1 Dose 2 Dose 3 
Sample Mean 10.441 9.695 12.668 7.586 



Analysis of Variance – More precisely 

• The F-test used in ANOVA: 
 
 
 

 
• The numerator degrees of freedom =  
 
 
• The denominator degrees of freedom =  
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Back to Example 2 

• Means and SD for the data are: 
 
 
 
 
 
 
 
 

• The P-value from F-test = 0.0055. 
• Is this p-value valid?  Verify the assumptions similar to those 

described for the t-test. 
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Control Dose 1 Dose 2 Dose 3 
Mean 10.441 9.695 12.668 7.586 
Standard 
Deviation 0.687 0.895 1.232 3.973 



What can I infer? 

• The mean of at least one of the four groups is 
significantly different from the others at level of 
significance of 0.01 because the p-value is 0.0055. 
 

• Can anything be said about which mean is different 
or how the means differ from each other? 
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Post-hoc Analysis 

A researcher is often interested in: 
 

– Pairwise comparisons of treatment groups vs. control group. 
 

– All pairwise comparisons. 
 

– Trend test to detect dose-response.  
 

Post-hoc analysis can be used 
 

78 



Post-hoc multiple comparisons 
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http://eprints.aston.ac.uk/9317/1/Statnote_6.pdf 



Formulation of statistical hypothesis! 

When a researcher knows what he/she wants to 
compare the F-test may not be the most  
appropriate test.   
 
Alternative more powerful methods of analysis are  
available depending upon the scientific question of  
interest.  
 

 
 

 
 

 80 



An example of power comparisons  
in a dose-response study (a simulated data) 

– Level of significance = 0.05 
– Number of dose groups  = 4 
– Sample size at each dose = 6 
– Standard deviation of each group  = 1 
 

 
 
 

 
 

 
 
• Substantial gains in power by testing for trend rather than 

using the standard ANOVA based F-test. 
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Mean patterns Power using 
F-test 

Power using 
trend test 

(1, 1.25, 1.5,1.75) 0.157 0.355 

(1, 2, 2, 2) 0.335 0.547 
(1, 2, 2.5, 3) 0.795 0.958 



Formulation of statistical hypothesis! 

 
 
 
Formulation of the statistical hypothesis is a very  
important step before performing any analysis of data. 
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Multiple testing in genomics and other high 
dimensional data analysis 
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Discoveries in microarray data and  
other high dimensional data 

• Consider a microarray experiment with the following 
experimental design: 
 
– Control group - 6 animals 
– Treatment group - 6 animals 
– Affy chip consisting of m = 45000 probes. 

 
Questions:  Identify differentially expressed probes.  
 

• Identify probes that are significantly up regulated in 
the treatment group. 

• Identify probes that are significantly down regulated in 
the treatment group. 
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Discoveries in high dimensional data 

• Problem of interest: 
 
– Compare two (or more) groups on the basis of m = 45000 

probes! Thus 45000 statistical tests are being performed! 
 

• False positive rate accumulates 
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Number of 
probes (m) 

Probability falsely rejecting at 
least one null hypothesis 

(assuming probes are 
independent) 

1 0.05 
2 0.10 
3 0.14 
5 0.23 

45000 1 



Two commonly used error rates 

• Family Wise Error Rate (FWER). 
 

– Probability of falsely rejecting at least one null 
hypothesis among all hypotheses tested. 

 
• False Discovery Rate (FDR). 
 

– The expected proportion of false discoveries 
among all discoveries made. 
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Null 
hypothesis is 

True 

Alternative 
hypothesis is 

True 
Total 
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87 

Classification of m hypothesis tests 

 FWER = Pr(V>=1) or equivalently, FWER = 1- Pr(V = 0) 
 FDR = E (V/R) = E(V/(V + S)) 



Control of FWER … 
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Controlling FWER 
 

Bonferroni method 
 
Suppose the microarray consists of “m” probes on the chip.  
 
1. Compute the standard p-value for each probe. 

 
2. Multiply the p-value by “m”.  If the result is more than 1 then 

set it to 1. This is called the Bonferroni adjusted p-value. 
 
Decision rule: 
 
For a given probe if its Bonferroni adjusted p-value is less than  
0.05 then you conclude that it is differentially expressed  
at FWER of 0.05. 
 
 
This procedure can be applied very broadly, but is conservative. 
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Control of FDR … 

90 



Controlling FDR 

Benjamini-Hochberg procedure (Step-up procedure) 
 

Suppose there are “m” probes on the microarray.  
 
1. Compute p-value for each probe. 
2. Sort probes by their p-values. 

 
3. Let  

 
4. Identify the largest index r such that  
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BH procedure 

Reject all null hypotheses                         
corresponding to the p-values  
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An illustration 

 

• Suppose we have a microarray containing 15 probes.   
 

• The p-values based on standard t-test are given in 
the table. 
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Probe  P-value 

Probe1 0.0043 
Probe2 0.0037 
Probe3 0.0008 
Probe4 0.0001 
Probe5 0.0042 
Probe6 0.3098 
Probe7 0.1112 
Probe8 0.1712 
Probe9 0.9676 
Probe10 0.715 
Probe11 0.0216 
Probe12 0.5526 
Probe13 0.7577 
Probe14 0.023 
Probe15 0.1545 



Probe Sorted P-
value 

Probe4 0.0001 

Probe3 0.0008 
Probe2 0.0037 

Probe5 0.0042 

Probe1 0.0043 

Probe11 0.0216 

Probe14 0.023 
Probe7 0.1112 

Probe15 0.1545 
Probe8 0.1712 
Probe6 0.3098 

Probe12 0.5526 

Probe10 0.715 

Probe13 0.7577 
Probe9 0.9676 95 

Bonferroni 
p-value 

0.0015 

0.012 
0.0555 

0.063 

0.0645 

0.324 

0.345 
1 

1 
1 
1 

1 

1 

1 
1 

Benjamini-Hochberg 
threshold 

0.003333 

0.006667 
0.01 

0.013333 

0.016667 

0.02 

0.023333 
0.026667 

0.03 
0.033333 
0.036667 

0.04 

0.043333 

0.046667 
0.05 

Probe Sorted P-
value 

Probe4 0.0001 

Probe3 0.0008 
Probe2 0.0037 

Probe5 0.0042 

Probe1 0.0043 

Probe11 0.0216 

Probe14 0.023 
Probe7 0.1112 

Probe15 0.1545 
Probe8 0.1712 
Probe6 0.3098 

Probe12 0.5526 

Probe10 0.715 

Probe13 0.7577 
Probe9 0.9676 

Bonferroni 
p-value 

0.0015 

0.012 
0.0555 

0.063 

0.0645 

0.324 

0.345 
1 

1 
1 
1 

1 

1 

1 
1 

Benjamini-Hochberg 
threshold 

0.003333 

0.006667 
0.01 

0.013333 

0.016667 

0.02 

0.023333 
0.026667 

0.03 
0.033333 
0.036667 

0.04 

0.043333 

0.046667 
0.05 

𝛼(𝑖) =
𝑖
𝑚
𝛼 

 
Here m= 15  
𝛼 = 0.05 

i=1, 2, …, 15 



Conclusion 

 
• FWER controlling methods (e.g. Bonferroni method) 

tend to be more conservative compared to FDR 
controlling methods (e.g. BH procedure). 
 
– i.e. fewer number of probes will be selected as significant if 

FWER is controlled instead of FDR. 
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Questions? 

97 
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Wilcoxon Rank Sum test- normal approximation 
method 

99 • Calculation of T is more complicated if there are ties 



Bootstrap – 2: Bootstrap residuals 

Basic difference between this method and  
Bootstrap-1 method is in Step 3.  
 
- Details omitted. 
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Comments on bootstrapping residuals 

Strengths 
 

1. Distribution free.  The samples can be from any continuous 
distribution. 

 
2. No need to verify if the variances are equal or not. 

 
3. Since it may not be easy to verify if the variances are equal 

or not in a high dimensional data , it is the ideal method for 
analyzing large scale genomic data. 
 

4. This method can be extended to more complex modeling 
situations. 

 
Potential weakness 

 
1.  May have a smaller power than the pooled t-test if the data 

satisfy the assumptions 3* and 4* required by t-test. 101 
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